Using \label{} and \ref{} outside of equation numbering
-
\begin{equation} \label{eq:solve1} x^2 - 5 x + 6 = 0 \end{equation} \begin{equation} \label{eq:solve2} x_1 = \frac{5 + \sqrt{25 - 4 \times 6}}{2} = 3 \end{equation} \begin{equation} \label{eq:solve3} x_2 = \frac{5 - \sqrt{25 - 4 \times 6}}{2} = 2 \end{equation} Equation 1 reference \ref{eq:solve1} Equation 2 reference \ref{eq:solve2} Equation 3 reference \ref{eq:solve3}
I understand how to use \label{} and \ref{} to reference equations using the markup shown above; however, I would like to be able to reference items that are not equations as shown below with \label{inj_test} and \label{ker_norm}. Is this possible with QuickLatex? Any other suggestions for making this work?
Let $f:G_{1} \rightarrow G_{2}$ be a homomorphism of groups. <br> <ol> <li>$f(g^{-1})=f(g)^{-1}$ for all $g \in G_{1}$</li> <li>$f(e_{G_{1}})=e_{G_{2}}$</li> <li>If $h:G_{2} \rightarrow G_{3}$ is a homomorphism, then $h \circ f:G_{1} \rightarrow G_{3}$ is a homomorphism.</li> <li>If $f$ is an isomorphism, then so is $f^{-1}$.</li> <li>$f$ is injective if and only if $\ker(f)=\{e\}$. \label{inj_test}</li> <li>The kernel is normal in $G$, i.e., $\ker(f) \norm G$. \label{ker_norm}</li> </ol> <br> Proof of ~\ref{inj_test} Let $f$ be injective. Suppose that $x \in \ker(f)$ so $f(x)=e=f(e)$. Thus $x=e$ showing that $\ker(f)=\{e\}$. \\ Now, conversely, suppose that $\ker(f)=\{e\}$. Set $f(x)=f(y)$. Then, as $f$ is a homomorphism, $f(xy^{-1})=e$. This yields that $xy^{-1}=e$ or equivalently, $x=y$. Proof of \ref{ker_norm} <b>DO THIS</b>
Viewing 7 replies - 1 through 7 (of 7 total)
Viewing 7 replies - 1 through 7 (of 7 total)
- The topic ‘Using \label{} and \ref{} outside of equation numbering’ is closed to new replies.